
Journal ofStatisticalPhysics, VoL 19, No. 5, 1978 

Cascade 

Robert M. 

Model of Fully Developed Turbulence 

Kerr 1 and Erie D. Siggia 2,s 

Received June 6, 1978 

A simple system of quadratically nonlinear equations representing a 
hierarchy of frequency scales is derived from a cutoff version of Burgers" 
equation. When forced, the model system reproduces a number of quali- 
tative features of fully developed turbulence. In equilibrium, the model 
exhibits, in addition to the energy, an extensive isolating integral of the 
motion that is cubic in the velocity. 
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1. INTRODUCTION 

Kolmogorov's phenomenological theory for the energy spectrum in a 
turbulent fluid in three dimensions is perhaps the single most successful 
theoretical attempt to comprehend fully developed turbulence. (1) Neverthe- 
less it fails to account for certain fluctuation effects (" intermittency ") that 
are seen experimentally in three dimensions3 2) Furthermore, it is formulated 
in such general terms that it would appear to apply to a number of simpler 
models, such as Burgers' equationY ) 
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Burgers' equation was originally proposed as a one-dimensional model 
of the more complicated Navier-Stokes equations. Its "turbulent" or high- 
Reynold's number solution consists simply of a random array of shocks that 
yield a k -2 energy spectrum, rather than the k -5/3 spectrum predicted by 
Kolmogorov5 3~ One expects, on phenomenological grounds, that there are 
small intermittency-induced deviations from a -5/3  exponent even in three 
dimensions. ~ In this light, Burgers' equation may provide insight into the 
development and nature of intermittency effects in three dimensions even 
though it is not quantitatively correct. 

An alternative class of models (5-1o~ of the Navier-Stokes equation has 
been developed that utilizes only a few degrees of freedom to represent the 
velocity for each band of wave numbers, 2 ~ ~< k < 2 ~+1. These modes are 
coupled together so as to preserve the relevant conservation laws and the 
order-of-magnitude interactions between different scales implicit in the 
Navier-Stokes equations. The energy is observed to cascade through a 
hierarchy of scales in a manner reminiscent of Kolmogorov's theory. A 
-5/3  (or -2/3  when band integrated) energy spectrum is by construction a 
stationary solution to these models, but in certain cases it is unstable. (9,1~ 
When the resulting temporally intermittent solutions are averaged, statistic- 
ally stationary correlation functions are obtained that for at least one model 
prove to be in semiquantitative accord with experiment. (~~ 

In this paper we will develop another cascade model as a limiting case 
of Burgers' equation cutoff in Fourier space; that is, the nonlinear convec- 
tive term is made approximately local in wavenumber space and thus 
nonlocal in real space. This new model has two real modes per wavenumber 
band and would again appear to satisfy the hypotheses necessary for 
Kolmogorov's theory to apply. Though our limiting model is undoubtedly 
intermittent, the energy spectrum may remain in accord with Kolmogorov's 
predictions. 

Turbulence of course is only obtained from the Navier-Stokes equations 
in the presence of forcing and a small, but finite, dissipation. Nevertheless, 
the equilibrium statistical mechanics of a simple fluid, represented, for 
example, by all Fourier modes falling within a circle or a sphere, has provided 
useful insights into turbulent cascades in two and three dimensions, m~ In 
three dimensions the only relevant conserved quantity is the energy, which is 
quadratic in the velocity. The corresponding probability distribution assigns 
equal energy to each mode. (~2~ Our model system, in the absence of forcing 
and dissipation, has in addition to the energy a second isolating, extensive, 
conserved quantity that is cubic in the velocity and whose velocity derivatives 
generate the equations of motion. The equilibrium distribution established 
by our model is quite complicated and no longer yields equipartition of 
energy in all cases. 
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2. DEFINITION OF MODEL 

Burgers' equation for a velocity u(x, t)  at position x and time t is 

8u ~u 02u 
0-7 + u v x  - "g-~x ~ = o O )  

where v is the viscosity. The nonlinear term in (1) models the convective term 
in the Navier-Stokes equations. It conserves all integrals of the form 

2at 

/ ~ = f o  u' dx  

provided u is periodic on the interval (0, 2zr). The energy E is just �89 The 
third invariant 13 will henceforth be denoted by H because it generates the 
equations of motion for our model. 

Equations of the same general form as (2) on the interval (0, 2zr) are 
conveniently written in Fourier space by specifying the interaction T(I, m ] - n )  
= T(m, l I - n )  among a triad of wave numbers I, m, and n: 

Oud~t = ~ T(I, m[-n)UzUm - vn2un (2) 
l,m 

We will require that T(I, rain) be proportional to n. By translational invariance 
T must contain a delta-function factor, so we may define 

T(I, m]n) = i(n/2) 5(l + m + n) A(I, m, n) 

For Burgers' equation, A = 1. 
The nonlinear term in (2) conserves the energy �89 Y., unu_, ,  provided 

T(1, mln) + T(1, nlm) + T(m, nil ) = 0 

so we impose in addition that A is a symmetric function of its three arguments. 
The quantity 

H = ~ u,umu_ ~_ • A(n, m, -- n -- rn) (3) 
71,??1 

is conserved by (2) when v = 0 and A is symmetric. This is easily seen by 
using u~ and u_ ~ as conjugate variables in order to rewrite (2) as 

au~ i 6 ~H ~--7 = _ ~ u _ .  ( 4 )  

Equations of the form (2) are conventionally cut off in Fourier space by 
requiring that A(l, m, n) = 1 for 

b - I  <~ ]l/ml <~ b, b -1 <~ In/ml <~ b, b -1 <~ II/n I <~ b (5) 

and is zero otherwise. (la~ The energy and H are of course still conserved 
because (5) preserves the symmetry of A in its three arguments. 
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I f  b approaches 2 in (5), the allowed interactions tend to a particularly 
simple form. The two modes whose wave vectors have magnitude n interact 
only with modes whose wave vectors have magnitude �89 or 2n. Fourier space 
splits into decoupled chains of modes each labeled by an integer no not 
divisible by 2. I f  we impose some cutoff A in Fourier space, only modes 
u ~  with n = n02 z and 1 ~< l ~< L will interact. Using I to order these modes 
and rescaling, our model equations become, with uz = u ' z ,  

dul/dt  = 2iusul* 

du~/dt = 2 ~-li(u~_l + 2uz+~uz*), 2 ~< l < L (6) 

duL/dt = 2 L- liu~_ 

This system of equations has a considerable resemblance to other cascade 
models. The energy and H are still conserved. 

It will prove convenient in the following sections to introduce three new 
sets of  variables: 

Ez = �89 1 <. I <. L 

H, = Re(uz*u~_l), 2 ~< l ~< L (7) 

Az = Im(u~*u~_l), 2 ~< l ~< L 

The first set is of course just the shell energies and the second set the shell 
"Hamil tonians ,"  since (6) becomes with H = ~#= s H~ just 

du,/dt = i2 ~ 8H/~u_z (8) 

The third set of variables At are related to the energy transfer between shells 
~z = - 2  ~- 1A~, since the time rate of  change of the energy may be written 

dEJdt  = ,z - ,~+1, 1 <<, I <~ L (9) 

with E~ = ~L + ~ = 0. The quantity ~ is just the energy current is wavenumber 
space and (9) is a discrete form of the one-dimensional continuity equation. 

3. E Q U I L I B R I U M  S O L U T I O N S  

For L = 2, (6) may be reduced to 

d E d d A = 4 E l ( - E 1  + 2E2) (10) 2 = - ~ E 1  = 2A2, ~ 2 

and a number of  special solutions are easily obtained. For  
H = + 2512E812/3312 

which are the upper and lower bounds on H, one finds 

A s = 0 ,  E1 = 2 E 2  

ul = +(2~/E/3)e ~'~t, us = + ( ~ / 2 E / 3 ) e  ~'~ oJ = 2~ /2E/3  (11) 

When H = O, iAs = us*u~ 2 and thus I A s i  2 = 8E=E~ s. This allows a stationary 
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Fig. 1. T ime-ave raged  energy  spec t ra  for  H nea r  zero.  The  solid line is for  L = 3, 
E =  1.0, a n d  H = 4 . 5  x 10 -~. T he  d a s h e d  line is for  L =  7, E =  3.8, a n d  H =  
4.5 x 10 -2. 

globally stable solution with E1 = 0 and E2 = E, as may be seen from (10). 
The system asymptotically approaches this state for any initial condition 
with H = 0. For  solutions with H between these special values, El ,  E2, and 
A2 are periodic in time. The velocities themselves need not be periodic, 
because their absolute phases are not determined for given/71, E2, A2, and 
H. Note the constraint A 2 + H 2 = 8E2E12. 

Plasma physicists have studied a model, known as the three mode 
coupling problem, which reduces to (10) in a certain limit. (14~ Their model 
also has a cubic invariant that generates the equations of motion. 

Equations (6) were integrated forward from random initial conditions 
for a number of values of L > 2. The shell energies fluctuated in time but 
appeared to be statistically independent of the initial conditions for fixed 
E and H. Some time-averaged spectra for H near zero are plotted in Fig. 1. 

Fig. 2. Energy  spec t ra  for  / / =  H m ~ .  T he  
solid line is for  L = 3, E = 1.0, a n d  H = 
Hm~x = 1.26. The  da shed  line is for  L = 4, 
E = 1.0, a n d  H = H~ax = 1.28. 
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Fig~ 3. Time-averaged spectra for H near Hmax. Both curves are for E = 1.5 and 
/ / =  2.0. The solid line is for L = 4 and the dashed line is for L = 7. 

This figure suggests that for H small there is a tendency toward equipartition 
as L grows; but even for L = 7, there is a concentration of energy in the 
large-wavenumber bands. Recall that for L = 2 and H = 0, all the energy is 
in the highest, l = 2, wavenumber band. 

For  fixed L and E, H is bounded above and below by + H~ax. When H 
assumes its upper or lower bound, u,*u~_l is real, A~ is zero, and by (9), E~ is 
stationary. The maximum of H can be found from the extremum over all 
shell energies of  

= 22/3(~/ELEL_l +- . .  + ~/E2E1) (12) 

with the constraint E = Y.~= 1 E,. The values of  E, for H = Hmax appear 
unique and have been found explicitly for L ~< 4 (Fig. 2). For  larger L we 
expect that the energy spectrum will peak at intermediate l and have tails 
toward the higher and lower wavenumber bands. The quantity H~,: /E 31z is a 
bounded, monotone increasing function of L and must tend to a finite 
limit. The sequence appears to converge quite rapidly because from L = 3 
to L = 4, H~=x/E 312 increases f rom 1.26 to 1.28. For  H near its maximum, 
the energy spectra obtained by time-averaging the solutions of  (6) should 
approach the form expected for H = H ~ x .  Figure 3 illustrates this behavior. 

4. FORCED EQUATIONS WITH DISSIPATION 

An inertial range, in which correlation functions scale with wavenumber 
k, is believed to occur in a turbulent fluid for A << k << A, where A and A are 
respectively the characteristic scales set by the forcing and the dissipation. 
The precise nature of  the damping is believed to play no role in the inertial 
range provided it occurs only at high k. In order to obtain the maximum 
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information from a limited range of scales a forcing term was added only to 
the first of Eqs. (6) and a phenomenological eddy damping was included in 
only the last equation. Thus 

dul /d t  = E/ul* + 2iu2ul* 

duJd t  = 2z- l i (u~_l  + 2u~+luz*), 

duL/dt = 2L- li(u~_ l + i221aluLluL) 

2 < ~ l < L  

(13a) 

(13b) 

(13c) 

The forcing term introduces energy at a constant rate E. The eddy damping 
makes a negative-definite contribution to dEL/dt. The factor 2 2/3 in (13c) is 
partially conventional and its precise value has no appreciable effect on the 
energy cascade that develops when (13) is integrated forward in time. As 
written, (13) possesses a stationary "Kolmogorov"  solution, 

ul = - i(21Ia@/32-zja (14) 

so called because the energy transfer rate from band to band is a constant e. 
Alternative methods for introducing both a driving force and dissipation into 
cascade models are discussed at length in Refs. 9 and 10. 

Equations (13) were integrated numerically for L = 8 and 12. Correlation 
functions were computed as time averages and proved to be statistically 
stationary. A cascade developed in which energy was transferred to higher 
shells, the average energy transport between shells equalled e, and the 
averaged shell energies had well-defined values. The "Kolmogorov"  solution 
(14) is unstable and the energy transfer rate became temporally intermittent, 
that is, most of the transfer occurred during short periods of intense activity. 

For L large, there is a hierarchy of equations in (13) that differ only in 
the factor 2 z- 1 that sets the frequency scale. Furthermore, because each mode 
is coupled only to its nearest neighbors and a statistically stationary though 
noisy state appears to exist, one might suspect that correlation functions for 
1 << l << L would scale as some power of the frequency 2 ~. Unfortunately, 
with only the order of ten levels, end effects are quite pronounced and 
exponents are difficult to infer. Of course the behavior of certain time 
averages, such as the average energy transfer (@, follows from only station- 
arity, that is, averaging (9), 

E = l i m  1 fo ~-~ ~ -~ ez( t ) dt (15) 

No such argument exists for the average shell energies (E~), though estimating 
the magnitude of the velocity by factoring (15) yields a "mean field" or 
"Kolmogorov"  solution (E~) ,,~ 2-2~/3. 

In other cascade models temporal intermittency steepens the energy 
spectrum because bursts in u~ and u~-i are correlated in time and hence (15) 
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can be maintained with a smaller average energy. (a,~~ Furthermore, the 
bursts become more intense and concentrated in time as l increases, thus 
steepening the spectrum. However, the numerical integrations of  (13) did not 
show an energy spectrum any steeper than 2-2zla. This probably reflects the 
presence of the second invariant H i n  (6). Defining ~,, = - 2 ~- ~ Im(u,*uz_ ~u~_ 2) 
= -2z-~(HzA~-i + A I H ~ - I ) / E I - 1 ,  we find 

dH~/dt  = yl - y z + l ,  3 <~ I <<. L - 1 (16) 

Since H : ( t )  is statistically stationary, the average of the corresponding 
currents ~,, is independent of l. I f  (~,~) r 0, the energy exponent in the 
inertial range can again be estimated by factoring and averaging. One then 
finds (EE) ~ 2 -l/2. 

The variance of the energy transfer (e,2) is a useful quantitative measure 
of  the level of intermittency. I f  we assume (eft) scales as 2 "t, then our numeri- 
cal results imply that /z  is certainly positive and probably less than 1.0. End 
effects preclude any firmer conclusions. Note that for L = 10, (13) already 
spans a range of 10 3 in frequency; it is ndt a simple matter to double L. 

5. D I S C U S S I O N  

A simple model of the turbulent energy cascade has been derived with a 
number of  novel properties attributable to a cubic, extensive, and inviscid 
constant of the motion. One is reminded of two-dimensional turbulence, 
where there is also an extensive invariant in addition to the energy, the 
enstrophy. It  is well known that because the ratio of  the energy and the 
enstrophy is always the squared wave vector, a simultaneous, statistically 
steady cascade of both cannot exist. (1~) One observes instead two separate 
cascades in opposite directions in Fourier space, m~ Our cubic invariant is a 
consequence of the cubic invariant in the one-dimensional Burgers' equation 
and is not expected to occur in truncations of  the Navier-Stokes equations 
in higher dimensions. ~9~,4 

The precise impact of  the cubic invariant on the cascade solutions of our 
forced model, and by implication also on Burgers' equation, is not yet clear. 
In particular, (HI)  was not computed for the forced model. The contri- 

In Ref. 16, Hald has derived several low-order truncations to the two-dimensional 
Euler equation for which there are a number of invariants in addition to the energy and 
the enstrophy. Of course any system of n first-order equations can have up to n in- 
variants. The invariants he has found are not obviously generalizable to larger systems 
and are presumably not extensive in the sense that their value in a system is the sum 
of their values for a partition of that system, neglecting end effects317~ An extensive 
cubic invariant has been found in another one-dimensional model by Fyfe and Mont- 
gomery, aa~ 
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bution of the forcing term to dH2/dt is not of  definite sign, yet it is not clear 
whether, on the average, it might still inject H "s tuf f"  into the cascade. Even 
if (~'z) = 0, the implied constraint could still affect the cascade. I t  was 
inferred that the cubic invariant flattens the energy spectrum of our model 
system. By continuity, it should have the same effect on the cutoff Burgers' 
equations for b ~> 2. Thus, in a simulation for b ~> 2, a Kolmogorov-like 
energy spectrum might be found to within sampling and numerical errors, 
even though, as measured by the variance of the energy transfer, the system 
was intermittent. When b is increased and Burgers' equation is recovered, the 
cubic invariant, though formally still present, may have no effect on the 
cascade since H is no longer extensive. That  is, because H can no longer be 
written as a sum of terms H, each containing factors f rom only a few adjacent 
wavenumber bands, the constancy of the flux of H in Fourier space is less 
likely to constrain the cascade. 

The equilibrium solutions of  our model are also of  some interest. For  H 
near its upper and lower bounds, equipartition of energy is not expected to 
occur even for large L. However, if one imagines building up a large-L 
model by coupling together a sequence of  smaller models, both H and E will 
scale as L. However, we showed that Hm~x/E a/2 tends to a finite limit and 
thus H/Hmax ~ L -  a/2. Quite possibly in this situation equipartition of energy 
is again obtained. 
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